The blocksource interface provides an interface to read blocks from a
reftable table. This interface is implemented using read(3P) calls on
the underlying file descriptor. While this works alright, this pattern
is very inefficient when repeatedly querying the reftable stack for one
or more refs. This inefficiency can mostly be attributed to the fact
that we often need to re-read the same blocks over and over again, and
every single time we need to call read(3P) again.
A natural fit in this context is to use mmap(3P) instead of read(3P),
which has a bunch of benefits:
- We do not need to come up with a caching strategy for some of the
blocks as this will be handled by the kernel already.
- We can avoid the overhead of having to call into the read(3P)
syscall repeatedly.
- We do not need to allocate returned blocks repeatedly, but can
instead hand out pointers into the mmapped region directly.
Using mmap comes with a significant drawback on Windows though, because
mmapped files cannot be deleted and neither is it possible to rename
files onto an mmapped file. But for one, the reftable library gracefully
handles the case where auto-compaction cannot delete a still-open stack
already and ignores any such errors. Also, `reftable_stack_clean()` will
prune stale tables which are not referenced by "tables.list" anymore so
that those files can eventually be pruned. And second, we never rewrite
already-written stacks, so it does not matter that we cannot rename a
file over an mmaped file, either.
Another unfortunate property of mmap is that it is not supported by all
systems. But given that the size of reftables should typically be rather
limited (megabytes at most in the vast majority of repositories), we can
use the fallback implementation provided by `git_mmap()` which reads the
whole file into memory instead. This is the same strategy that the
"packed" backend uses.
While this change doesn't significantly improve performance in the case
where we're seeking through stacks once (like e.g. git-for-each-ref(1)
would). But it does speed up usecases where there is lots of random
access to refs, e.g. when writing. The following benchmark demonstrates
these savings with git-update-ref(1) creating N refs in an otherwise
empty repository:
Benchmark 1: update-ref: create many refs (refcount = 1, revision = HEAD~)
Time (mean ± σ): 5.1 ms ± 0.2 ms [User: 2.5 ms, System: 2.5 ms]
Range (min … max): 4.8 ms … 7.1 ms 111 runs
Benchmark 2: update-ref: create many refs (refcount = 100, revision = HEAD~)
Time (mean ± σ): 14.8 ms ± 0.5 ms [User: 7.1 ms, System: 7.5 ms]
Range (min … max): 14.1 ms … 18.7 ms 84 runs
Benchmark 3: update-ref: create many refs (refcount = 10000, revision = HEAD~)
Time (mean ± σ): 926.4 ms ± 5.6 ms [User: 448.5 ms, System: 477.7 ms]
Range (min … max): 920.0 ms … 936.1 ms 10 runs
Benchmark 4: update-ref: create many refs (refcount = 1, revision = HEAD)
Time (mean ± σ): 5.0 ms ± 0.2 ms [User: 2.4 ms, System: 2.5 ms]
Range (min … max): 4.7 ms … 5.4 ms 111 runs
Benchmark 5: update-ref: create many refs (refcount = 100, revision = HEAD)
Time (mean ± σ): 10.5 ms ± 0.2 ms [User: 5.0 ms, System: 5.3 ms]
Range (min … max): 10.0 ms … 10.9 ms 93 runs
Benchmark 6: update-ref: create many refs (refcount = 10000, revision = HEAD)
Time (mean ± σ): 529.6 ms ± 9.1 ms [User: 268.0 ms, System: 261.4 ms]
Range (min … max): 522.4 ms … 547.1 ms 10 runs
Summary
update-ref: create many refs (refcount = 1, revision = HEAD) ran
1.01 ± 0.06 times faster than update-ref: create many refs (refcount = 1, revision = HEAD~)
2.08 ± 0.07 times faster than update-ref: create many refs (refcount = 100, revision = HEAD)
2.95 ± 0.14 times faster than update-ref: create many refs (refcount = 100, revision = HEAD~)
105.33 ± 3.76 times faster than update-ref: create many refs (refcount = 10000, revision = HEAD)
184.24 ± 5.89 times faster than update-ref: create many refs (refcount = 10000, revision = HEAD~)
Theoretically, we could also replicate the strategy of the "packed"
backend where small tables are read into memory instead of using mmap.
Benchmarks did not confirm that this has a performance benefit though.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Git - fast, scalable, distributed revision control system
Git is a fast, scalable, distributed revision control system with an unusually rich command set that provides both high-level operations and full access to internals.
Git is an Open Source project covered by the GNU General Public License version 2 (some parts of it are under different licenses, compatible with the GPLv2). It was originally written by Linus Torvalds with help of a group of hackers around the net.
Please read the file INSTALL for installation instructions.
Many Git online resources are accessible from https://git-scm.com/ including full documentation and Git related tools.
See Documentation/gittutorial.txt to get started, then see
Documentation/giteveryday.txt for a useful minimum set of commands, and
Documentation/git-<commandname>.txt for documentation of each command.
If git has been correctly installed, then the tutorial can also be
read with man gittutorial or git help tutorial, and the
documentation of each command with man git-<commandname> or git help <commandname>.
CVS users may also want to read Documentation/gitcvs-migration.txt
(man gitcvs-migration or git help cvs-migration if git is
installed).
The user discussion and development of Git take place on the Git mailing list -- everyone is welcome to post bug reports, feature requests, comments and patches to git@vger.kernel.org (read Documentation/SubmittingPatches for instructions on patch submission and Documentation/CodingGuidelines).
Those wishing to help with error message, usage and informational message
string translations (localization l10) should see po/README.md
(a po file is a Portable Object file that holds the translations).
To subscribe to the list, send an email with just "subscribe git" in the body to majordomo@vger.kernel.org (not the Git list). The mailing list archives are available at https://lore.kernel.org/git/, https://marc.info/?l=git and other archival sites.
Issues which are security relevant should be disclosed privately to the Git Security mailing list git-security@googlegroups.com.
The maintainer frequently sends the "What's cooking" reports that list the current status of various development topics to the mailing list. The discussion following them give a good reference for project status, development direction and remaining tasks.
The name "git" was given by Linus Torvalds when he wrote the very first version. He described the tool as "the stupid content tracker" and the name as (depending on your mood):
- random three-letter combination that is pronounceable, and not actually used by any common UNIX command. The fact that it is a mispronunciation of "get" may or may not be relevant.
- stupid. contemptible and despicable. simple. Take your pick from the dictionary of slang.
- "global information tracker": you're in a good mood, and it actually works for you. Angels sing, and a light suddenly fills the room.
- "goddamn idiotic truckload of sh*t": when it breaks