Files
git/reftable/block.c
Junio C Hamano 6e2a3b8ae0 Merge branch 'ps/reftable-sans-compat-util'
Make the code in reftable library less reliant on the service
routines it used to borrow from Git proper, to make it easier to
use by external users of the library.

* ps/reftable-sans-compat-util:
  Makefile: skip reftable library for Coccinelle
  reftable: decouple from Git codebase by pulling in "compat/posix.h"
  git-compat-util.h: split out POSIX-emulating bits
  compat/mingw: split out POSIX-related bits
  reftable/basics: introduce `REFTABLE_UNUSED` annotation
  reftable/basics: stop using `SWAP()` macro
  reftable/stack: stop using `sleep_millisec()`
  reftable/system: introduce `reftable_rand()`
  reftable/reader: stop using `ARRAY_SIZE()` macro
  reftable/basics: provide wrappers for big endian conversion
  reftable/basics: stop using `st_mult()` in array allocators
  reftable: stop using `BUG()` in trivial cases
  reftable/record: don't `BUG()` in `reftable_record_cmp()`
  reftable/record: stop using `BUG()` in `reftable_record_init()`
  reftable/record: stop using `COPY_ARRAY()`
  reftable/blocksource: stop using `xmmap()`
  reftable/stack: stop using `write_in_full()`
  reftable/stack: stop using `read_in_full()`
2025-04-08 11:43:14 -07:00

585 lines
15 KiB
C

/*
Copyright 2020 Google LLC
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/
#include "block.h"
#include "blocksource.h"
#include "constants.h"
#include "record.h"
#include "reftable-error.h"
#include "system.h"
size_t header_size(int version)
{
switch (version) {
case 1:
return 24;
case 2:
return 28;
}
abort();
}
size_t footer_size(int version)
{
switch (version) {
case 1:
return 68;
case 2:
return 72;
}
abort();
}
static int block_writer_register_restart(struct block_writer *w, int n,
int is_restart, struct reftable_buf *key)
{
uint32_t rlen;
int err;
rlen = w->restart_len;
if (rlen >= MAX_RESTARTS)
is_restart = 0;
if (is_restart)
rlen++;
if (2 + 3 * rlen + n > w->block_size - w->next)
return REFTABLE_ENTRY_TOO_BIG_ERROR;
if (is_restart) {
REFTABLE_ALLOC_GROW_OR_NULL(w->restarts, w->restart_len + 1,
w->restart_cap);
if (!w->restarts)
return REFTABLE_OUT_OF_MEMORY_ERROR;
w->restarts[w->restart_len++] = w->next;
}
w->next += n;
reftable_buf_reset(&w->last_key);
err = reftable_buf_add(&w->last_key, key->buf, key->len);
if (err < 0)
return err;
w->entries++;
return 0;
}
int block_writer_init(struct block_writer *bw, uint8_t typ, uint8_t *block,
uint32_t block_size, uint32_t header_off, uint32_t hash_size)
{
bw->block = block;
bw->hash_size = hash_size;
bw->block_size = block_size;
bw->header_off = header_off;
bw->block[header_off] = typ;
bw->next = header_off + 4;
bw->restart_interval = 16;
bw->entries = 0;
bw->restart_len = 0;
bw->last_key.len = 0;
if (!bw->zstream) {
REFTABLE_CALLOC_ARRAY(bw->zstream, 1);
if (!bw->zstream)
return REFTABLE_OUT_OF_MEMORY_ERROR;
deflateInit(bw->zstream, 9);
}
return 0;
}
uint8_t block_writer_type(struct block_writer *bw)
{
return bw->block[bw->header_off];
}
/*
* Adds the reftable_record to the block. Returns 0 on success and
* appropriate error codes on failure.
*/
int block_writer_add(struct block_writer *w, struct reftable_record *rec)
{
struct reftable_buf empty = REFTABLE_BUF_INIT;
struct reftable_buf last =
w->entries % w->restart_interval == 0 ? empty : w->last_key;
struct string_view out = {
.buf = w->block + w->next,
.len = w->block_size - w->next,
};
struct string_view start = out;
int is_restart = 0;
int n = 0;
int err;
err = reftable_record_key(rec, &w->scratch);
if (err < 0)
goto done;
if (!w->scratch.len) {
err = REFTABLE_API_ERROR;
goto done;
}
n = reftable_encode_key(&is_restart, out, last, w->scratch,
reftable_record_val_type(rec));
if (n < 0) {
err = n;
goto done;
}
string_view_consume(&out, n);
n = reftable_record_encode(rec, out, w->hash_size);
if (n < 0) {
err = n;
goto done;
}
string_view_consume(&out, n);
err = block_writer_register_restart(w, start.len - out.len, is_restart,
&w->scratch);
done:
return err;
}
int block_writer_finish(struct block_writer *w)
{
for (uint32_t i = 0; i < w->restart_len; i++) {
reftable_put_be24(w->block + w->next, w->restarts[i]);
w->next += 3;
}
reftable_put_be16(w->block + w->next, w->restart_len);
w->next += 2;
reftable_put_be24(w->block + 1 + w->header_off, w->next);
/*
* Log records are stored zlib-compressed. Note that the compression
* also spans over the restart points we have just written.
*/
if (block_writer_type(w) == BLOCK_TYPE_LOG) {
int block_header_skip = 4 + w->header_off;
uLongf src_len = w->next - block_header_skip, compressed_len;
int ret;
ret = deflateReset(w->zstream);
if (ret != Z_OK)
return REFTABLE_ZLIB_ERROR;
/*
* Precompute the upper bound of how many bytes the compressed
* data may end up with. Combined with `Z_FINISH`, `deflate()`
* is guaranteed to return `Z_STREAM_END`.
*/
compressed_len = deflateBound(w->zstream, src_len);
REFTABLE_ALLOC_GROW_OR_NULL(w->compressed, compressed_len,
w->compressed_cap);
if (!w->compressed) {
ret = REFTABLE_OUT_OF_MEMORY_ERROR;
return ret;
}
w->zstream->next_out = w->compressed;
w->zstream->avail_out = compressed_len;
w->zstream->next_in = w->block + block_header_skip;
w->zstream->avail_in = src_len;
/*
* We want to perform all decompression in a single step, which
* is why we can pass Z_FINISH here. As we have precomputed the
* deflated buffer's size via `deflateBound()` this function is
* guaranteed to succeed according to the zlib documentation.
*/
ret = deflate(w->zstream, Z_FINISH);
if (ret != Z_STREAM_END)
return REFTABLE_ZLIB_ERROR;
/*
* Overwrite the uncompressed data we have already written and
* adjust the `next` pointer to point right after the
* compressed data.
*/
memcpy(w->block + block_header_skip, w->compressed,
w->zstream->total_out);
w->next = w->zstream->total_out + block_header_skip;
}
return w->next;
}
int block_reader_init(struct block_reader *br, struct reftable_block *block,
uint32_t header_off, uint32_t table_block_size,
uint32_t hash_size)
{
uint32_t full_block_size = table_block_size;
uint8_t typ = block->data[header_off];
uint32_t sz = reftable_get_be24(block->data + header_off + 1);
int err = 0;
uint16_t restart_count = 0;
uint32_t restart_start = 0;
uint8_t *restart_bytes = NULL;
reftable_block_done(&br->block);
if (!reftable_is_block_type(typ)) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
if (typ == BLOCK_TYPE_LOG) {
uint32_t block_header_skip = 4 + header_off;
uLong dst_len = sz - block_header_skip;
uLong src_len = block->len - block_header_skip;
/* Log blocks specify the *uncompressed* size in their header. */
REFTABLE_ALLOC_GROW_OR_NULL(br->uncompressed_data, sz,
br->uncompressed_cap);
if (!br->uncompressed_data) {
err = REFTABLE_OUT_OF_MEMORY_ERROR;
goto done;
}
/* Copy over the block header verbatim. It's not compressed. */
memcpy(br->uncompressed_data, block->data, block_header_skip);
if (!br->zstream) {
REFTABLE_CALLOC_ARRAY(br->zstream, 1);
if (!br->zstream) {
err = REFTABLE_OUT_OF_MEMORY_ERROR;
goto done;
}
err = inflateInit(br->zstream);
} else {
err = inflateReset(br->zstream);
}
if (err != Z_OK) {
err = REFTABLE_ZLIB_ERROR;
goto done;
}
br->zstream->next_in = block->data + block_header_skip;
br->zstream->avail_in = src_len;
br->zstream->next_out = br->uncompressed_data + block_header_skip;
br->zstream->avail_out = dst_len;
/*
* We know both input as well as output size, and we know that
* the sizes should never be bigger than `uInt_MAX` because
* blocks can at most be 16MB large. We can thus use `Z_FINISH`
* here to instruct zlib to inflate the data in one go, which
* is more efficient than using `Z_NO_FLUSH`.
*/
err = inflate(br->zstream, Z_FINISH);
if (err != Z_STREAM_END) {
err = REFTABLE_ZLIB_ERROR;
goto done;
}
err = 0;
if (br->zstream->total_out + block_header_skip != sz) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
/* We're done with the input data. */
reftable_block_done(block);
block->data = br->uncompressed_data;
block->len = sz;
full_block_size = src_len + block_header_skip - br->zstream->avail_in;
} else if (full_block_size == 0) {
full_block_size = sz;
} else if (sz < full_block_size && sz < block->len &&
block->data[sz] != 0) {
/* If the block is smaller than the full block size, it is
padded (data followed by '\0') or the next block is
unaligned. */
full_block_size = sz;
}
restart_count = reftable_get_be16(block->data + sz - 2);
restart_start = sz - 2 - 3 * restart_count;
restart_bytes = block->data + restart_start;
/* transfer ownership. */
br->block = *block;
block->data = NULL;
block->len = 0;
br->hash_size = hash_size;
br->block_len = restart_start;
br->full_block_size = full_block_size;
br->header_off = header_off;
br->restart_count = restart_count;
br->restart_bytes = restart_bytes;
done:
return err;
}
void block_reader_release(struct block_reader *br)
{
inflateEnd(br->zstream);
reftable_free(br->zstream);
reftable_free(br->uncompressed_data);
reftable_block_done(&br->block);
}
uint8_t block_reader_type(const struct block_reader *r)
{
return r->block.data[r->header_off];
}
int block_reader_first_key(const struct block_reader *br, struct reftable_buf *key)
{
int off = br->header_off + 4, n;
struct string_view in = {
.buf = br->block.data + off,
.len = br->block_len - off,
};
uint8_t extra = 0;
reftable_buf_reset(key);
n = reftable_decode_key(key, &extra, in);
if (n < 0)
return n;
if (!key->len)
return REFTABLE_FORMAT_ERROR;
return 0;
}
static uint32_t block_reader_restart_offset(const struct block_reader *br, size_t idx)
{
return reftable_get_be24(br->restart_bytes + 3 * idx);
}
void block_iter_seek_start(struct block_iter *it, const struct block_reader *br)
{
it->block = br->block.data;
it->block_len = br->block_len;
it->hash_size = br->hash_size;
reftable_buf_reset(&it->last_key);
it->next_off = br->header_off + 4;
}
struct restart_needle_less_args {
int error;
struct reftable_buf needle;
const struct block_reader *reader;
};
static int restart_needle_less(size_t idx, void *_args)
{
struct restart_needle_less_args *args = _args;
uint32_t off = block_reader_restart_offset(args->reader, idx);
struct string_view in = {
.buf = args->reader->block.data + off,
.len = args->reader->block_len - off,
};
uint64_t prefix_len, suffix_len;
uint8_t extra;
int n;
/*
* Records at restart points are stored without prefix compression, so
* there is no need to fully decode the record key here. This removes
* the need for allocating memory.
*/
n = reftable_decode_keylen(in, &prefix_len, &suffix_len, &extra);
if (n < 0 || prefix_len) {
args->error = 1;
return -1;
}
string_view_consume(&in, n);
if (suffix_len > in.len) {
args->error = 1;
return -1;
}
n = memcmp(args->needle.buf, in.buf,
args->needle.len < suffix_len ? args->needle.len : suffix_len);
if (n)
return n < 0;
return args->needle.len < suffix_len;
}
int block_iter_next(struct block_iter *it, struct reftable_record *rec)
{
struct string_view in = {
.buf = (unsigned char *) it->block + it->next_off,
.len = it->block_len - it->next_off,
};
struct string_view start = in;
uint8_t extra = 0;
int n = 0;
if (it->next_off >= it->block_len)
return 1;
n = reftable_decode_key(&it->last_key, &extra, in);
if (n < 0)
return -1;
if (!it->last_key.len)
return REFTABLE_FORMAT_ERROR;
string_view_consume(&in, n);
n = reftable_record_decode(rec, it->last_key, extra, in, it->hash_size,
&it->scratch);
if (n < 0)
return -1;
string_view_consume(&in, n);
it->next_off += start.len - in.len;
return 0;
}
void block_iter_reset(struct block_iter *it)
{
reftable_buf_reset(&it->last_key);
it->next_off = 0;
it->block = NULL;
it->block_len = 0;
it->hash_size = 0;
}
void block_iter_close(struct block_iter *it)
{
reftable_buf_release(&it->last_key);
reftable_buf_release(&it->scratch);
}
int block_iter_seek_key(struct block_iter *it, const struct block_reader *br,
struct reftable_buf *want)
{
struct restart_needle_less_args args = {
.needle = *want,
.reader = br,
};
struct reftable_record rec;
int err = 0;
size_t i;
/*
* Perform a binary search over the block's restart points, which
* avoids doing a linear scan over the whole block. Like this, we
* identify the section of the block that should contain our key.
*
* Note that we explicitly search for the first restart point _greater_
* than the sought-after record, not _greater or equal_ to it. In case
* the sought-after record is located directly at the restart point we
* would otherwise start doing the linear search at the preceding
* restart point. While that works alright, we would end up scanning
* too many record.
*/
i = binsearch(br->restart_count, &restart_needle_less, &args);
if (args.error) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
/*
* Now there are multiple cases:
*
* - `i == 0`: The wanted record is smaller than the record found at
* the first restart point. As the first restart point is the first
* record in the block, our wanted record cannot be located in this
* block at all. We still need to position the iterator so that the
* next call to `block_iter_next()` will yield an end-of-iterator
* signal.
*
* - `i == restart_count`: The wanted record was not found at any of
* the restart points. As there is no restart point at the end of
* the section the record may thus be contained in the last block.
*
* - `i > 0`: The wanted record must be contained in the section
* before the found restart point. We thus do a linear search
* starting from the preceding restart point.
*/
if (i > 0)
it->next_off = block_reader_restart_offset(br, i - 1);
else
it->next_off = br->header_off + 4;
it->block = br->block.data;
it->block_len = br->block_len;
it->hash_size = br->hash_size;
err = reftable_record_init(&rec, block_reader_type(br));
if (err < 0)
goto done;
/*
* We're looking for the last entry less than the wanted key so that
* the next call to `block_reader_next()` would yield the wanted
* record. We thus don't want to position our reader at the sought
* after record, but one before. To do so, we have to go one entry too
* far and then back up.
*/
while (1) {
size_t prev_off = it->next_off;
err = block_iter_next(it, &rec);
if (err < 0)
goto done;
if (err > 0) {
it->next_off = prev_off;
err = 0;
goto done;
}
err = reftable_record_key(&rec, &it->last_key);
if (err < 0)
goto done;
/*
* Check whether the current key is greater or equal to the
* sought-after key. In case it is greater we know that the
* record does not exist in the block and can thus abort early.
* In case it is equal to the sought-after key we have found
* the desired record.
*
* Note that we store the next record's key record directly in
* `last_key` without restoring the key of the preceding record
* in case we need to go one record back. This is safe to do as
* `block_iter_next()` would return the ref whose key is equal
* to `last_key` now, and naturally all keys share a prefix
* with themselves.
*/
if (reftable_buf_cmp(&it->last_key, want) >= 0) {
it->next_off = prev_off;
goto done;
}
}
done:
reftable_record_release(&rec);
return err;
}
void block_writer_release(struct block_writer *bw)
{
deflateEnd(bw->zstream);
REFTABLE_FREE_AND_NULL(bw->zstream);
REFTABLE_FREE_AND_NULL(bw->restarts);
REFTABLE_FREE_AND_NULL(bw->compressed);
reftable_buf_release(&bw->scratch);
reftable_buf_release(&bw->last_key);
/* the block is not owned. */
}
void reftable_block_done(struct reftable_block *blockp)
{
struct reftable_block_source source = blockp->source;
if (blockp && source.ops)
source.ops->return_block(source.arg, blockp);
blockp->data = NULL;
blockp->len = 0;
blockp->source.ops = NULL;
blockp->source.arg = NULL;
}