Files
git/reftable/merged.c
Patrick Steinhardt 9d471b9dfe reftable/merged: drain priority queue on reseek
In 5bf96e0c39 (reftable/generic: move seeking of records into the
iterator, 2024-05-13) we have refactored the reftable codebase such that
iterators can be initialized once and then re-seeked multiple times.
This feature is used by 1869525066 (refs/reftable: wire up support for
exclude patterns, 2024-09-16) in order to skip records based on exclude
patterns provided by the caller.

The logic to re-seek the merged iterator is insufficient though because
we don't drain the priority queue on a re-seek. This means that the
queue may contain stale entries and thus reading the next record in the
queue will return the wrong entry. While this is an obvious bug, it is
harmless in the context of above exclude patterns:

  - If the queue contained stale entries that match the pattern then the
    caller would already know to filter out such refs. This is because
    our codebase is prepared to handle backends that don't have a way to
    efficiently implement exclude patterns.

  - If the queue contained stale entries that don't match the pattern
    we'd eventually filter out any duplicates. This is because the
    reftable code discards items with the same ref name and sorts any
    remaining entries properly.

So things happen to work in this context regardless of the bug, and
there is no other use case yet where we re-seek iterators. We're about
to introduce a caching mechanism though where iterators are reused by
the reftable backend, and that will expose the bug.

Fix the issue by draining the priority queue when seeking and add a
testcase that surfaces the issue.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-11-26 17:18:38 +09:00

302 lines
6.8 KiB
C

/*
Copyright 2020 Google LLC
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/
#include "merged.h"
#include "constants.h"
#include "iter.h"
#include "pq.h"
#include "reader.h"
#include "record.h"
#include "reftable-merged.h"
#include "reftable-error.h"
#include "system.h"
struct merged_subiter {
struct reftable_iterator iter;
struct reftable_record rec;
};
struct merged_iter {
struct merged_subiter *subiters;
struct merged_iter_pqueue pq;
size_t subiters_len;
int suppress_deletions;
ssize_t advance_index;
};
static void merged_iter_close(void *p)
{
struct merged_iter *mi = p;
merged_iter_pqueue_release(&mi->pq);
for (size_t i = 0; i < mi->subiters_len; i++) {
reftable_iterator_destroy(&mi->subiters[i].iter);
reftable_record_release(&mi->subiters[i].rec);
}
reftable_free(mi->subiters);
}
static int merged_iter_advance_subiter(struct merged_iter *mi, size_t idx)
{
struct pq_entry e = {
.index = idx,
.rec = &mi->subiters[idx].rec,
};
int err;
err = iterator_next(&mi->subiters[idx].iter, &mi->subiters[idx].rec);
if (err)
return err;
err = merged_iter_pqueue_add(&mi->pq, &e);
if (err)
return err;
return 0;
}
static int merged_iter_seek(struct merged_iter *mi, struct reftable_record *want)
{
int err;
mi->advance_index = -1;
while (!merged_iter_pqueue_is_empty(mi->pq))
merged_iter_pqueue_remove(&mi->pq);
for (size_t i = 0; i < mi->subiters_len; i++) {
err = iterator_seek(&mi->subiters[i].iter, want);
if (err < 0)
return err;
if (err > 0)
continue;
err = merged_iter_advance_subiter(mi, i);
if (err < 0)
return err;
}
return 0;
}
static int merged_iter_next_entry(struct merged_iter *mi,
struct reftable_record *rec)
{
struct pq_entry entry = { 0 };
int err = 0, empty;
empty = merged_iter_pqueue_is_empty(mi->pq);
if (mi->advance_index >= 0) {
/*
* When there are no pqueue entries then we only have a single
* subiter left. There is no need to use the pqueue in that
* case anymore as we know that the subiter will return entries
* in the correct order already.
*
* While this may sound like a very specific edge case, it may
* happen more frequently than you think. Most repositories
* will end up having a single large base table that contains
* most of the refs. It's thus likely that we exhaust all
* subiters but the one from that base ref.
*/
if (empty)
return iterator_next(&mi->subiters[mi->advance_index].iter,
rec);
err = merged_iter_advance_subiter(mi, mi->advance_index);
if (err < 0)
return err;
if (!err)
empty = 0;
mi->advance_index = -1;
}
if (empty)
return 1;
entry = merged_iter_pqueue_remove(&mi->pq);
/*
One can also use reftable as datacenter-local storage, where the ref
database is maintained in globally consistent database (eg.
CockroachDB or Spanner). In this scenario, replication delays together
with compaction may cause newer tables to contain older entries. In
such a deployment, the loop below must be changed to collect all
entries for the same key, and return new the newest one.
*/
while (!merged_iter_pqueue_is_empty(mi->pq)) {
struct pq_entry top = merged_iter_pqueue_top(mi->pq);
int cmp;
cmp = reftable_record_cmp(top.rec, entry.rec);
if (cmp > 0)
break;
merged_iter_pqueue_remove(&mi->pq);
err = merged_iter_advance_subiter(mi, top.index);
if (err < 0)
return err;
}
mi->advance_index = entry.index;
SWAP(*rec, *entry.rec);
return 0;
}
static int merged_iter_seek_void(void *it, struct reftable_record *want)
{
return merged_iter_seek(it, want);
}
static int merged_iter_next_void(void *p, struct reftable_record *rec)
{
struct merged_iter *mi = p;
while (1) {
int err = merged_iter_next_entry(mi, rec);
if (err)
return err;
if (mi->suppress_deletions && reftable_record_is_deletion(rec))
continue;
return 0;
}
}
static struct reftable_iterator_vtable merged_iter_vtable = {
.seek = merged_iter_seek_void,
.next = &merged_iter_next_void,
.close = &merged_iter_close,
};
static void iterator_from_merged_iter(struct reftable_iterator *it,
struct merged_iter *mi)
{
assert(!it->ops);
it->iter_arg = mi;
it->ops = &merged_iter_vtable;
}
int reftable_merged_table_new(struct reftable_merged_table **dest,
struct reftable_reader **readers, size_t n,
enum reftable_hash hash_id)
{
struct reftable_merged_table *m = NULL;
uint64_t last_max = 0;
uint64_t first_min = 0;
for (size_t i = 0; i < n; i++) {
uint64_t min = reftable_reader_min_update_index(readers[i]);
uint64_t max = reftable_reader_max_update_index(readers[i]);
if (reftable_reader_hash_id(readers[i]) != hash_id) {
return REFTABLE_FORMAT_ERROR;
}
if (i == 0 || min < first_min) {
first_min = min;
}
if (i == 0 || max > last_max) {
last_max = max;
}
}
REFTABLE_CALLOC_ARRAY(m, 1);
if (!m)
return REFTABLE_OUT_OF_MEMORY_ERROR;
m->readers = readers;
m->readers_len = n;
m->min = first_min;
m->max = last_max;
m->hash_id = hash_id;
*dest = m;
return 0;
}
void reftable_merged_table_free(struct reftable_merged_table *mt)
{
if (!mt)
return;
reftable_free(mt);
}
uint64_t
reftable_merged_table_max_update_index(struct reftable_merged_table *mt)
{
return mt->max;
}
uint64_t
reftable_merged_table_min_update_index(struct reftable_merged_table *mt)
{
return mt->min;
}
int merged_table_init_iter(struct reftable_merged_table *mt,
struct reftable_iterator *it,
uint8_t typ)
{
struct merged_subiter *subiters;
struct merged_iter *mi = NULL;
int ret;
REFTABLE_CALLOC_ARRAY(subiters, mt->readers_len);
if (!subiters) {
ret = REFTABLE_OUT_OF_MEMORY_ERROR;
goto out;
}
for (size_t i = 0; i < mt->readers_len; i++) {
reftable_record_init(&subiters[i].rec, typ);
ret = reader_init_iter(mt->readers[i], &subiters[i].iter, typ);
if (ret < 0)
goto out;
}
REFTABLE_CALLOC_ARRAY(mi, 1);
if (!mi) {
ret = REFTABLE_OUT_OF_MEMORY_ERROR;
goto out;
}
mi->advance_index = -1;
mi->suppress_deletions = mt->suppress_deletions;
mi->subiters = subiters;
mi->subiters_len = mt->readers_len;
iterator_from_merged_iter(it, mi);
ret = 0;
out:
if (ret < 0) {
for (size_t i = 0; subiters && i < mt->readers_len; i++) {
reftable_iterator_destroy(&subiters[i].iter);
reftable_record_release(&subiters[i].rec);
}
reftable_free(subiters);
reftable_free(mi);
}
return ret;
}
int reftable_merged_table_init_ref_iterator(struct reftable_merged_table *mt,
struct reftable_iterator *it)
{
return merged_table_init_iter(mt, it, BLOCK_TYPE_REF);
}
int reftable_merged_table_init_log_iterator(struct reftable_merged_table *mt,
struct reftable_iterator *it)
{
return merged_table_init_iter(mt, it, BLOCK_TYPE_LOG);
}
enum reftable_hash reftable_merged_table_hash_id(struct reftable_merged_table *mt)
{
return mt->hash_id;
}