Files
git/object.c
Karthik Nayak a52d459e72 bundle: fix non-linear performance scaling with refs
The 'git bundle create' command has non-linear performance with the
number of refs in the repository. Benchmarking the command shows that
a large portion of the time (~75%) is spent in the
`object_array_remove_duplicates()` function.

The `object_array_remove_duplicates()` function was added in
b2a6d1c686 (bundle: allow the same ref to be given more than once,
2009-01-17) to skip duplicate refs provided by the user from being
written to the bundle. Since this is an O(N^2) algorithm, in repos with
large number of references, this can take up a large amount of time.

Let's instead use a 'strset' to skip duplicates inside
`write_bundle_refs()`. This improves the performance by around 6 times
when tested against in repository with 100000 refs:

Benchmark 1: bundle (refcount = 100000, revision = master)
  Time (mean ± σ):     14.653 s ±  0.203 s    [User: 13.940 s, System: 0.762 s]
  Range (min … max):   14.237 s … 14.920 s    10 runs

Benchmark 2: bundle (refcount = 100000, revision = HEAD)
  Time (mean ± σ):      2.394 s ±  0.023 s    [User: 1.684 s, System: 0.798 s]
  Range (min … max):    2.364 s …  2.425 s    10 runs

Summary
  bundle (refcount = 100000, revision = HEAD) ran
    6.12 ± 0.10 times faster than bundle (refcount = 100000, revision = master)

Previously, `object_array_remove_duplicates()` ensured that both the
refname and the object it pointed to were checked for duplicates. The
new approach, implemented within `write_bundle_refs()`, eliminates
duplicate refnames without comparing the objects they reference. This
works because, for bundle creation, we only need to prevent duplicate
refs from being written to the bundle header. The `revs->pending` array
can contain duplicates of multiple types.

First, references which resolve to the same refname. For e.g. "git
bundle create out.bdl master master" or "git bundle create out.bdl
refs/heads/master refs/heads/master" or "git bundle create out.bdl
master refs/heads/master". In these scenarios we want to prevent writing
"refs/heads/master" twice to the bundle header. Since both the refnames
here would point to the same object (unless there is a race), we do not
need to check equality of the object.

Second, refnames which are duplicates but do not point to the same
object. This can happen when we use an exclusion criteria. For e.g. "git
bundle create out.bdl master master^!", Here `revs->pending` would
contain two elements, both with refname set to "master". However, each
of them would be pointing to an INTERESTING and UNINTERESTING object
respectively. Since we only write refnames with INTERESTING objects to
the bundle header, we perform our duplicate checks only on such objects.

Signed-off-by: Karthik Nayak <karthik.188@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2025-04-08 14:21:49 -07:00

655 lines
15 KiB
C

#define USE_THE_REPOSITORY_VARIABLE
#define DISABLE_SIGN_COMPARE_WARNINGS
#include "git-compat-util.h"
#include "gettext.h"
#include "hex.h"
#include "object.h"
#include "replace-object.h"
#include "object-file.h"
#include "object-store.h"
#include "blob.h"
#include "statinfo.h"
#include "tree.h"
#include "commit.h"
#include "tag.h"
#include "alloc.h"
#include "packfile.h"
#include "commit-graph.h"
#include "loose.h"
unsigned int get_max_object_index(void)
{
return the_repository->parsed_objects->obj_hash_size;
}
struct object *get_indexed_object(unsigned int idx)
{
return the_repository->parsed_objects->obj_hash[idx];
}
static const char *object_type_strings[] = {
NULL, /* OBJ_NONE = 0 */
"commit", /* OBJ_COMMIT = 1 */
"tree", /* OBJ_TREE = 2 */
"blob", /* OBJ_BLOB = 3 */
"tag", /* OBJ_TAG = 4 */
};
const char *type_name(unsigned int type)
{
if (type >= ARRAY_SIZE(object_type_strings))
return NULL;
return object_type_strings[type];
}
int type_from_string_gently(const char *str, ssize_t len, int gentle)
{
int i;
if (len < 0)
len = strlen(str);
for (i = 1; i < ARRAY_SIZE(object_type_strings); i++)
if (!xstrncmpz(object_type_strings[i], str, len))
return i;
if (gentle)
return -1;
die(_("invalid object type \"%s\""), str);
}
/*
* Return a numerical hash value between 0 and n-1 for the object with
* the specified sha1. n must be a power of 2. Please note that the
* return value is *not* consistent across computer architectures.
*/
static unsigned int hash_obj(const struct object_id *oid, unsigned int n)
{
return oidhash(oid) & (n - 1);
}
/*
* Insert obj into the hash table hash, which has length size (which
* must be a power of 2). On collisions, simply overflow to the next
* empty bucket.
*/
static void insert_obj_hash(struct object *obj, struct object **hash, unsigned int size)
{
unsigned int j = hash_obj(&obj->oid, size);
while (hash[j]) {
j++;
if (j >= size)
j = 0;
}
hash[j] = obj;
}
/*
* Look up the record for the given sha1 in the hash map stored in
* obj_hash. Return NULL if it was not found.
*/
struct object *lookup_object(struct repository *r, const struct object_id *oid)
{
unsigned int i, first;
struct object *obj;
if (!r->parsed_objects->obj_hash)
return NULL;
first = i = hash_obj(oid, r->parsed_objects->obj_hash_size);
while ((obj = r->parsed_objects->obj_hash[i]) != NULL) {
if (oideq(oid, &obj->oid))
break;
i++;
if (i == r->parsed_objects->obj_hash_size)
i = 0;
}
if (obj && i != first) {
/*
* Move object to where we started to look for it so
* that we do not need to walk the hash table the next
* time we look for it.
*/
SWAP(r->parsed_objects->obj_hash[i],
r->parsed_objects->obj_hash[first]);
}
return obj;
}
/*
* Increase the size of the hash map stored in obj_hash to the next
* power of 2 (but at least 32). Copy the existing values to the new
* hash map.
*/
static void grow_object_hash(struct repository *r)
{
int i;
/*
* Note that this size must always be power-of-2 to match hash_obj
* above.
*/
int new_hash_size = r->parsed_objects->obj_hash_size < 32 ? 32 : 2 * r->parsed_objects->obj_hash_size;
struct object **new_hash;
CALLOC_ARRAY(new_hash, new_hash_size);
for (i = 0; i < r->parsed_objects->obj_hash_size; i++) {
struct object *obj = r->parsed_objects->obj_hash[i];
if (!obj)
continue;
insert_obj_hash(obj, new_hash, new_hash_size);
}
free(r->parsed_objects->obj_hash);
r->parsed_objects->obj_hash = new_hash;
r->parsed_objects->obj_hash_size = new_hash_size;
}
void *create_object(struct repository *r, const struct object_id *oid, void *o)
{
struct object *obj = o;
obj->parsed = 0;
obj->flags = 0;
oidcpy(&obj->oid, oid);
if (r->parsed_objects->obj_hash_size - 1 <= r->parsed_objects->nr_objs * 2)
grow_object_hash(r);
insert_obj_hash(obj, r->parsed_objects->obj_hash,
r->parsed_objects->obj_hash_size);
r->parsed_objects->nr_objs++;
return obj;
}
void *object_as_type(struct object *obj, enum object_type type, int quiet)
{
if (obj->type == type)
return obj;
else if (obj->type == OBJ_NONE) {
if (type == OBJ_COMMIT)
init_commit_node((struct commit *) obj);
else
obj->type = type;
return obj;
}
else {
if (!quiet)
error(_("object %s is a %s, not a %s"),
oid_to_hex(&obj->oid),
type_name(obj->type), type_name(type));
return NULL;
}
}
struct object *lookup_unknown_object(struct repository *r, const struct object_id *oid)
{
struct object *obj = lookup_object(r, oid);
if (!obj)
obj = create_object(r, oid, alloc_object_node(r));
return obj;
}
struct object *lookup_object_by_type(struct repository *r,
const struct object_id *oid,
enum object_type type)
{
switch (type) {
case OBJ_COMMIT:
return (struct object *)lookup_commit(r, oid);
case OBJ_TREE:
return (struct object *)lookup_tree(r, oid);
case OBJ_TAG:
return (struct object *)lookup_tag(r, oid);
case OBJ_BLOB:
return (struct object *)lookup_blob(r, oid);
default:
BUG("unknown object type %d", type);
}
}
enum peel_status peel_object(struct repository *r,
const struct object_id *name,
struct object_id *oid)
{
struct object *o = lookup_unknown_object(r, name);
if (o->type == OBJ_NONE) {
int type = oid_object_info(r, name, NULL);
if (type < 0 || !object_as_type(o, type, 0))
return PEEL_INVALID;
}
if (o->type != OBJ_TAG)
return PEEL_NON_TAG;
o = deref_tag_noverify(r, o);
if (!o)
return PEEL_INVALID;
oidcpy(oid, &o->oid);
return PEEL_PEELED;
}
struct object *parse_object_buffer(struct repository *r, const struct object_id *oid, enum object_type type, unsigned long size, void *buffer, int *eaten_p)
{
struct object *obj;
*eaten_p = 0;
obj = NULL;
if (type == OBJ_BLOB) {
struct blob *blob = lookup_blob(r, oid);
if (blob) {
parse_blob_buffer(blob);
obj = &blob->object;
}
} else if (type == OBJ_TREE) {
struct tree *tree = lookup_tree(r, oid);
if (tree) {
obj = &tree->object;
if (!tree->buffer)
tree->object.parsed = 0;
if (!tree->object.parsed) {
if (parse_tree_buffer(tree, buffer, size))
return NULL;
*eaten_p = 1;
}
}
} else if (type == OBJ_COMMIT) {
struct commit *commit = lookup_commit(r, oid);
if (commit) {
if (parse_commit_buffer(r, commit, buffer, size, 1))
return NULL;
if (save_commit_buffer &&
!get_cached_commit_buffer(r, commit, NULL)) {
set_commit_buffer(r, commit, buffer, size);
*eaten_p = 1;
}
obj = &commit->object;
}
} else if (type == OBJ_TAG) {
struct tag *tag = lookup_tag(r, oid);
if (tag) {
if (parse_tag_buffer(r, tag, buffer, size))
return NULL;
obj = &tag->object;
}
} else {
warning(_("object %s has unknown type id %d"), oid_to_hex(oid), type);
obj = NULL;
}
return obj;
}
struct object *parse_object_or_die(const struct object_id *oid,
const char *name)
{
struct object *o = parse_object(the_repository, oid);
if (o)
return o;
die(_("unable to parse object: %s"), name ? name : oid_to_hex(oid));
}
struct object *parse_object_with_flags(struct repository *r,
const struct object_id *oid,
enum parse_object_flags flags)
{
int skip_hash = !!(flags & PARSE_OBJECT_SKIP_HASH_CHECK);
int discard_tree = !!(flags & PARSE_OBJECT_DISCARD_TREE);
unsigned long size;
enum object_type type;
int eaten;
const struct object_id *repl = lookup_replace_object(r, oid);
void *buffer;
struct object *obj;
obj = lookup_object(r, oid);
if (obj && obj->parsed)
return obj;
if (skip_hash) {
struct commit *commit = lookup_commit_in_graph(r, repl);
if (commit)
return &commit->object;
}
if ((!obj || obj->type == OBJ_BLOB) &&
oid_object_info(r, oid, NULL) == OBJ_BLOB) {
if (!skip_hash && stream_object_signature(r, repl) < 0) {
error(_("hash mismatch %s"), oid_to_hex(oid));
return NULL;
}
parse_blob_buffer(lookup_blob(r, oid));
return lookup_object(r, oid);
}
/*
* If the caller does not care about the tree buffer and does not
* care about checking the hash, we can simply verify that we
* have the on-disk object with the correct type.
*/
if (skip_hash && discard_tree &&
(!obj || obj->type == OBJ_TREE) &&
oid_object_info(r, oid, NULL) == OBJ_TREE) {
return &lookup_tree(r, oid)->object;
}
buffer = repo_read_object_file(r, oid, &type, &size);
if (buffer) {
if (!skip_hash &&
check_object_signature(r, repl, buffer, size, type) < 0) {
free(buffer);
error(_("hash mismatch %s"), oid_to_hex(repl));
return NULL;
}
obj = parse_object_buffer(r, oid, type, size,
buffer, &eaten);
if (!eaten)
free(buffer);
if (discard_tree && type == OBJ_TREE)
free_tree_buffer((struct tree *)obj);
return obj;
}
return NULL;
}
struct object *parse_object(struct repository *r, const struct object_id *oid)
{
return parse_object_with_flags(r, oid, 0);
}
struct object_list *object_list_insert(struct object *item,
struct object_list **list_p)
{
struct object_list *new_list = xmalloc(sizeof(struct object_list));
new_list->item = item;
new_list->next = *list_p;
*list_p = new_list;
return new_list;
}
int object_list_contains(struct object_list *list, struct object *obj)
{
while (list) {
if (list->item == obj)
return 1;
list = list->next;
}
return 0;
}
void object_list_free(struct object_list **list)
{
while (*list) {
struct object_list *p = *list;
*list = p->next;
free(p);
}
}
/*
* A zero-length string to which object_array_entry::name can be
* initialized without requiring a malloc/free.
*/
static char object_array_slopbuf[1];
void object_array_init(struct object_array *array)
{
struct object_array blank = OBJECT_ARRAY_INIT;
memcpy(array, &blank, sizeof(*array));
}
void add_object_array_with_path(struct object *obj, const char *name,
struct object_array *array,
unsigned mode, const char *path)
{
unsigned nr = array->nr;
unsigned alloc = array->alloc;
struct object_array_entry *objects = array->objects;
struct object_array_entry *entry;
if (nr >= alloc) {
alloc = (alloc + 32) * 2;
REALLOC_ARRAY(objects, alloc);
array->alloc = alloc;
array->objects = objects;
}
entry = &objects[nr];
entry->item = obj;
if (!name)
entry->name = NULL;
else if (!*name)
/* Use our own empty string instead of allocating one: */
entry->name = object_array_slopbuf;
else
entry->name = xstrdup(name);
entry->mode = mode;
if (path)
entry->path = xstrdup(path);
else
entry->path = NULL;
array->nr = ++nr;
}
void add_object_array(struct object *obj, const char *name, struct object_array *array)
{
add_object_array_with_path(obj, name, array, S_IFINVALID, NULL);
}
/*
* Free all memory associated with an entry; the result is
* in an unspecified state and should not be examined.
*/
static void object_array_release_entry(struct object_array_entry *ent)
{
if (ent->name != object_array_slopbuf)
free(ent->name);
free(ent->path);
}
struct object *object_array_pop(struct object_array *array)
{
struct object *ret;
if (!array->nr)
return NULL;
ret = array->objects[array->nr - 1].item;
object_array_release_entry(&array->objects[array->nr - 1]);
array->nr--;
return ret;
}
void object_array_filter(struct object_array *array,
object_array_each_func_t want, void *cb_data)
{
unsigned nr = array->nr, src, dst;
struct object_array_entry *objects = array->objects;
for (src = dst = 0; src < nr; src++) {
if (want(&objects[src], cb_data)) {
if (src != dst)
objects[dst] = objects[src];
dst++;
} else {
object_array_release_entry(&objects[src]);
}
}
array->nr = dst;
}
void object_array_clear(struct object_array *array)
{
int i;
for (i = 0; i < array->nr; i++)
object_array_release_entry(&array->objects[i]);
FREE_AND_NULL(array->objects);
array->nr = array->alloc = 0;
}
void clear_object_flags(unsigned flags)
{
int i;
for (i=0; i < the_repository->parsed_objects->obj_hash_size; i++) {
struct object *obj = the_repository->parsed_objects->obj_hash[i];
if (obj)
obj->flags &= ~flags;
}
}
void repo_clear_commit_marks(struct repository *r, unsigned int flags)
{
int i;
for (i = 0; i < r->parsed_objects->obj_hash_size; i++) {
struct object *obj = r->parsed_objects->obj_hash[i];
if (obj && obj->type == OBJ_COMMIT)
obj->flags &= ~flags;
}
}
struct parsed_object_pool *parsed_object_pool_new(struct repository *repo)
{
struct parsed_object_pool *o = xmalloc(sizeof(*o));
memset(o, 0, sizeof(*o));
o->repo = repo;
o->blob_state = allocate_alloc_state();
o->tree_state = allocate_alloc_state();
o->commit_state = allocate_alloc_state();
o->tag_state = allocate_alloc_state();
o->object_state = allocate_alloc_state();
o->is_shallow = -1;
CALLOC_ARRAY(o->shallow_stat, 1);
o->buffer_slab = allocate_commit_buffer_slab();
return o;
}
struct raw_object_store *raw_object_store_new(void)
{
struct raw_object_store *o = xmalloc(sizeof(*o));
memset(o, 0, sizeof(*o));
INIT_LIST_HEAD(&o->packed_git_mru);
hashmap_init(&o->pack_map, pack_map_entry_cmp, NULL, 0);
pthread_mutex_init(&o->replace_mutex, NULL);
return o;
}
void free_object_directory(struct object_directory *odb)
{
free(odb->path);
odb_clear_loose_cache(odb);
loose_object_map_clear(&odb->loose_map);
free(odb);
}
static void free_object_directories(struct raw_object_store *o)
{
while (o->odb) {
struct object_directory *next;
next = o->odb->next;
free_object_directory(o->odb);
o->odb = next;
}
kh_destroy_odb_path_map(o->odb_by_path);
o->odb_by_path = NULL;
}
void raw_object_store_clear(struct raw_object_store *o)
{
FREE_AND_NULL(o->alternate_db);
oidmap_free(o->replace_map, 1);
FREE_AND_NULL(o->replace_map);
pthread_mutex_destroy(&o->replace_mutex);
free_commit_graph(o->commit_graph);
o->commit_graph = NULL;
o->commit_graph_attempted = 0;
free_object_directories(o);
o->odb_tail = NULL;
o->loaded_alternates = 0;
INIT_LIST_HEAD(&o->packed_git_mru);
close_object_store(o);
/*
* `close_object_store()` only closes the packfiles, but doesn't free
* them. We thus have to do this manually.
*/
for (struct packed_git *p = o->packed_git, *next; p; p = next) {
next = p->next;
free(p);
}
o->packed_git = NULL;
hashmap_clear(&o->pack_map);
}
void parsed_object_pool_reset_commit_grafts(struct parsed_object_pool *o)
{
for (int i = 0; i < o->grafts_nr; i++) {
unparse_commit(o->repo, &o->grafts[i]->oid);
free(o->grafts[i]);
}
o->grafts_nr = 0;
o->commit_graft_prepared = 0;
}
void parsed_object_pool_clear(struct parsed_object_pool *o)
{
/*
* As objects are allocated in slabs (see alloc.c), we do
* not need to free each object, but each slab instead.
*
* Before doing so, we need to free any additional memory
* the objects may hold.
*/
unsigned i;
for (i = 0; i < o->obj_hash_size; i++) {
struct object *obj = o->obj_hash[i];
if (!obj)
continue;
if (obj->type == OBJ_TREE)
free_tree_buffer((struct tree*)obj);
else if (obj->type == OBJ_COMMIT)
release_commit_memory(o, (struct commit*)obj);
else if (obj->type == OBJ_TAG)
release_tag_memory((struct tag*)obj);
}
FREE_AND_NULL(o->obj_hash);
o->obj_hash_size = 0;
free_commit_buffer_slab(o->buffer_slab);
o->buffer_slab = NULL;
parsed_object_pool_reset_commit_grafts(o);
clear_alloc_state(o->blob_state);
clear_alloc_state(o->tree_state);
clear_alloc_state(o->commit_state);
clear_alloc_state(o->tag_state);
clear_alloc_state(o->object_state);
stat_validity_clear(o->shallow_stat);
FREE_AND_NULL(o->blob_state);
FREE_AND_NULL(o->tree_state);
FREE_AND_NULL(o->commit_state);
FREE_AND_NULL(o->tag_state);
FREE_AND_NULL(o->object_state);
FREE_AND_NULL(o->shallow_stat);
}