When advancing one of the subiters fails we immediately release
resources associated with that subiter. This is not necessary though as
we will release these resources when closing the merged iterator anyway.
Drop the logic and only release resources when the merged iterator is
done. This is a mere cleanup that should help reduce the cognitive load
when reading through the code.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Whenever we advance a subiter we first call `iterator_is_null()`. This
is not needed though because we only ever advance subiters which have
entries in the priority queue, and we do not end entries to the priority
queue when the subiter has been exhausted.
Drop the check as well as the now-unused function. This results in a
surprisingly big speedup:
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 138.1 ms ± 4.4 ms [User: 135.1 ms, System: 2.8 ms]
Range (min … max): 133.4 ms … 167.3 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 134.4 ms ± 4.2 ms [User: 131.5 ms, System: 2.8 ms]
Range (min … max): 130.0 ms … 164.0 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.03 ± 0.05 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
For each subiterator, the merged table needs to track their current
record. This record is owned by the priority queue though instead of by
the merged iterator. This is not optimal performance-wise.
For one, we need to move around records whenever we add or remove a
record from the priority queue. Thus, the bigger the entries the more
bytes we need to copy around. And compared to pointers, a reftable
record is rather on the bigger side. The other issue is that this makes
it harder to reuse the records.
Refactor the code so that the merged iterator tracks ownership of the
records per-subiter. Instead of having records in the priority queue, we
can now use mere pointers to the per-subiter records. This also allows
us to swap records between the caller and the per-subiter record instead
of doing an actual copy via `reftable_record_copy_from()`, which removes
the need to release the caller-provided record.
This results in a noticeable speedup when iterating through many refs.
The following benchmark iterates through 1 million refs:
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 145.5 ms ± 4.5 ms [User: 142.5 ms, System: 2.8 ms]
Range (min … max): 141.3 ms … 177.0 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 139.0 ms ± 4.7 ms [User: 136.1 ms, System: 2.8 ms]
Range (min … max): 134.2 ms … 182.2 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.05 ± 0.05 times faster than show-ref: single matching ref (revision = HEAD~)
This refactoring also allows a subsequent refactoring where we start
reusing memory allocated by the reftable records because we do not need
to release the caller-provided record anymore.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When advancing the merged iterator, we pop the topmost entry from its
priority queue and then advance the sub-iterator that the entry belongs
to, adding the result as a new entry. This is quite sensible in the case
where the merged iterator is used to actually iterate through records.
But the merged iterator is also used when we look up a single record,
only, so advancing the sub-iterator is wasted effort because we would
never even look at the result.
Instead of immediately advancing the sub-iterator, we can also defer
this to the next iteration of the merged iterator by storing the
intent-to-advance. This results in a small speedup when reading many
records. The following benchmark creates 10000 refs, which will also end
up with many ref lookups:
Benchmark 1: update-ref: create many refs (revision = HEAD~)
Time (mean ± σ): 337.2 ms ± 7.3 ms [User: 200.1 ms, System: 136.9 ms]
Range (min … max): 329.3 ms … 373.2 ms 100 runs
Benchmark 2: update-ref: create many refs (revision = HEAD)
Time (mean ± σ): 332.5 ms ± 5.9 ms [User: 197.2 ms, System: 135.1 ms]
Range (min … max): 327.6 ms … 359.8 ms 100 runs
Summary
update-ref: create many refs (revision = HEAD) ran
1.01 ± 0.03 times faster than update-ref: create many refs (revision = HEAD~)
While this speedup alone isn't really worth it, this refactoring will
also allow two additional optimizations in subsequent patches. First, it
will allow us to special-case when there is only a single sub-iter left
to circumvent the priority queue altogether. And second, it makes it
easier to avoid copying records to the caller.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The `merged_iter` structure is not used anywhere outside of "merged.c",
but is declared in its header. Move it into the code file so that it is
clear that its implementation details are never exposed to anything.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The reftable priority queue is used by the merged iterator to yield
records from its sub-iterators in the expected order. Each entry has a
record corresponding to such a sub-iterator as well as an index that
indicates which sub-iterator the record belongs to. But while the
sub-iterators are tracked with a `size_t`, we store the index as an
`int` in the entry.
Fix this and use `size_t` consistently.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The code to iterate over refs with the reftable backend has seen
some optimization.
* ps/reftable-iteration-perf:
reftable/reader: add comments to `table_iter_next()`
reftable/record: don't try to reallocate ref record name
reftable/block: swap buffers instead of copying
reftable/pq: allocation-less comparison of entry keys
reftable/merged: skip comparison for records of the same subiter
reftable/merged: allocation-less dropping of shadowed records
reftable/record: introduce function to compare records by key
Code clean-up in various reftable code paths.
* ps/reftable-styles:
reftable/record: improve semantics when initializing records
reftable/merged: refactor initialization of iterators
reftable/merged: refactor seeking of records
reftable/stack: use `size_t` to track stack length
reftable/stack: use `size_t` to track stack slices during compaction
reftable/stack: index segments with `size_t`
reftable/stack: fix parameter validation when compacting range
reftable: introduce macros to allocate arrays
reftable: introduce macros to grow arrays
Write multi-level indices for reftable has been corrected.
* ps/reftable-multi-level-indices-fix:
reftable: document reading and writing indices
reftable/writer: fix writing multi-level indices
reftable/writer: simplify writing index records
reftable/writer: use correct type to iterate through index entries
reftable/reader: be more careful about errors in indexed seeks
While working on the optimizations in the preceding patches I stumbled
upon `table_iter_next()` multiple times. It is quite easy to miss the
fact that we don't call `table_iter_next_in_block()` twice, but that the
second call is in fact `table_iter_next_block()`.
Add comments to explain what exactly is going on here to make things
more obvious. While at it, touch up the code to conform to our code
style better.
Note that one of the refactorings merges two conditional blocks into
one. Before, we had the following code:
```
err = table_iter_next_block(&next, ti);
if (err != 0) {
ti->is_finished = 1;
}
table_iter_block_done(ti);
if (err != 0) {
return err;
}
```
As `table_iter_block_done()` does not care about `is_finished`, the
conditional blocks can be merged into one block:
```
err = table_iter_next_block(&next, ti);
table_iter_block_done(ti);
if (err != 0) {
ti->is_finished = 1;
return err;
}
```
This is both easier to reason about and more performant because we have
one branch less.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When decoding reftable ref records we first release the pointer to the
record passed to us and then use realloc(3P) to allocate the refname
array. This is a bit misleading though as we know at that point that the
refname will always be `NULL`, so we would always end up allocating a
new char array anyway.
Refactor the code to use `REFTABLE_ALLOC_ARRAY()` instead. As the
following benchmark demonstrates this is a tiny bit more efficient. But
the bigger selling point really is the gained clarity.
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 150.1 ms ± 4.1 ms [User: 146.6 ms, System: 3.3 ms]
Range (min … max): 144.5 ms … 180.5 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 148.9 ms ± 4.5 ms [User: 145.2 ms, System: 3.4 ms]
Range (min … max): 143.0 ms … 185.4 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.01 ± 0.04 times faster than show-ref: single matching ref (revision = HEAD~)
Ideally, we should try and reuse the memory of the old record instead of
first freeing and then immediately reallocating it. This requires some
more surgery though and is thus left for a future iteration.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When iterating towards the next record in a reftable block we need to
keep track of the key that the last record had. This is required because
reftable records use prefix compression, where subsequent records may
reuse parts of their preceding record's key.
This key is stored in the `block_iter::last_key`, which we update after
every call to `block_iter_next()`: we simply reset the buffer and then
add the current key to it.
This is a bit inefficient though because it requires us to copy over the
key on every iteration, which adds up when iterating over many records.
Instead, we can make use of the fact that the `block_iter::key` buffer
is basically only a scratch buffer. So instead of copying over contents,
we can just swap both buffers.
The following benchmark prints a single ref matching a specific pattern
out of 1 million refs via git-show-ref(1):
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 155.7 ms ± 5.0 ms [User: 152.1 ms, System: 3.4 ms]
Range (min … max): 150.8 ms … 185.7 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 150.8 ms ± 4.2 ms [User: 147.1 ms, System: 3.5 ms]
Range (min … max): 145.1 ms … 180.7 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.03 ± 0.04 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The priority queue is used by the merged iterator to iterate over
reftable records from multiple tables in the correct order. The queue
ends up having one record for each table that is being iterated over,
with the record that is supposed to be shown next at the top. For
example, the key of a ref record is equal to its name so that we end up
sorting the priority queue lexicographically by ref name.
To figure out the order we need to compare the reftable record keys with
each other. This comparison is done by formatting them into a `struct
strbuf` and then doing `strbuf_strcmp()` on the result. We then discard
the buffers immediately after the comparison.
This ends up being very expensive. Because the priority queue usually
contains as many records as we have tables, we call the comparison
function `O(log($tablecount))` many times for every record we insert.
Furthermore, when iterating over many refs, we will insert at least one
record for every ref we are iterating over. So ultimately, this ends up
being called `O($refcount * log($tablecount))` many times.
Refactor the code to use the new `refatble_record_cmp()` function that
has been implemented in a preceding commit. This function does not need
to allocate memory and is thus significantly more efficient.
The following benchmark prints a single ref matching a specific pattern
out of 1 million refs via git-show-ref(1), where the reftable stack
consists of three tables:
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 224.4 ms ± 6.5 ms [User: 220.6 ms, System: 3.6 ms]
Range (min … max): 216.5 ms … 261.1 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 172.9 ms ± 4.4 ms [User: 169.2 ms, System: 3.6 ms]
Range (min … max): 166.5 ms … 204.6 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.30 ± 0.05 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When retrieving the next entry of a merged iterator we need to drop all
records of other sub-iterators that would be shadowed by the record that
we are about to return. We do this by comparing record keys, dropping
all keys that are smaller or equal to the key of the record we are about
to return.
There is an edge case here where we can skip that comparison: when the
record in the priority queue comes from the same subiterator as the
record we are about to return then we know that its key must be larger
than the key of the record we are about to return. This property is
guaranteed by the sub-iterators, and if it didn't hold then the whole
merged iterator would return records in the wrong order, too.
While this may seem like a very specific edge case it's in fact quite
likely to happen. For most repositories out there you can assume that we
will end up with one large table and several smaller ones on top of it.
Thus, it is very likely that the next entry will sort towards the top of
the priority queue.
Special case this and break out of the loop in that case. The following
benchmark uses git-show-ref(1) to print a single ref matching a pattern
out of 1 million refs:
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 162.6 ms ± 4.5 ms [User: 159.0 ms, System: 3.5 ms]
Range (min … max): 156.6 ms … 188.5 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 156.8 ms ± 4.7 ms [User: 153.0 ms, System: 3.6 ms]
Range (min … max): 151.4 ms … 188.4 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.04 ± 0.04 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The purpose of the merged reftable iterator is to iterate through all
entries of a set of tables in the correct order. This is implemented by
using a sub-iterator for each table, where the next entry of each of
these iterators gets put into a priority queue. For each iteration, we
do roughly the following steps:
1. Retrieve the top record of the priority queue. This is the entry we
want to return to the caller.
2. Retrieve the next record of the sub-iterator that this record came
from. If any, add it to the priority queue at the correct position.
The position is determined by comparing the record keys, which e.g.
corresponds to the refname for ref records.
3. Keep removing the top record of the priority queue until we hit the
first entry whose key is larger than the returned record's key.
This is required to drop "shadowed" records.
The last step will lead to at least one comparison to the next entry,
but may lead to many comparisons in case the reftable stack consists of
many tables with shadowed records. It is thus part of the hot code path
when iterating through records.
The code to compare the entries with each other is quite inefficient
though. Instead of comparing record keys with each other directly, we
first format them into `struct strbuf`s and only then compare them with
each other. While we already optimized this code path to reuse buffers
in 829231dc20 (reftable/merged: reuse buffer to compute record keys,
2023-12-11), the cost to format the keys into the buffers still adds up
quite significantly.
Refactor the code to use `reftable_record_cmp()` instead, which has been
introduced in the preceding commit. This function compares records with
each other directly without requiring any memory allocations or copying
and is thus way more efficient.
The following benchmark uses git-show-ref(1) to print a single ref
matching a pattern out of 1 million refs. This is the most direct way to
exercise ref iteration speed as we remove all overhead of having to show
the refs, too.
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 180.7 ms ± 4.7 ms [User: 177.1 ms, System: 3.4 ms]
Range (min … max): 174.9 ms … 211.7 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 162.1 ms ± 4.4 ms [User: 158.5 ms, System: 3.4 ms]
Range (min … max): 155.4 ms … 189.3 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.11 ± 0.04 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In some places we need to sort reftable records by their keys to
determine their ordering. This is done by first formatting the keys into
a `struct strbuf` and then using `strbuf_cmp()` to compare them. This
logic is needlessly roundabout and can end up costing quite a bit of CPU
cycles, both due to the allocation and formatting logic.
Introduce a new `reftable_record_cmp()` function that knows how to
compare two records with each other without requiring allocations.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The write codepath for the reftable data learned to honor
core.fsync configuration.
* jc/reftable-core-fsync:
reftable/stack: fsync "tables.list" during compaction
reftable: honor core.fsync
According to our usual coding style, the `reftable_new_record()`
function would indicate that it is allocating a new record. This is not
the case though as the function merely initializes records without
allocating any memory.
Replace `reftable_new_record()` with a new `reftable_record_init()`
function that takes a record pointer as input and initializes it
accordingly.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Refactor the initialization of the merged iterator to fit our code style
better. This refactoring prepares the code for a refactoring of how
records are being initialized.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The code to seek reftable records in the merged table code is quite hard
to read and does not conform to our coding style in multiple ways:
- We have multiple exit paths where we release resources even though
that is not really necessary.
- We use a scoped error variable `e` which is hard to reason about.
This variable is not required at all.
- We allocate memory in the variable declarations, which is easy to
miss.
Refactor the function so that it becomes more maintainable in the
future.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
While the stack length is already stored as `size_t`, we frequently use
`int`s to refer to those stacks throughout the reftable library. Convert
those cases to use `size_t` instead to make things consistent.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We use `int`s to track reftable slices when compacting the reftable
stack, which is considered to be a code smell in the Git project.
Convert the code to use `size_t` instead.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We use `int`s to index into arrays of segments and track the length of
them, which is considered to be a code smell in the Git project. Convert
the code to use `size_t` instead.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The `stack_compact_range()` function receives a "first" and "last" index
that indicates which tables of the reftable stack should be compacted.
Naturally, "first" must be smaller than "last" in order to identify a
proper range of tables to compress, which we indeed also assert in the
function. But the validations happens after we have already allocated
arrays with a size of `last - first + 1`, leading to an underflow and
thus an invalid allocation size.
Fix this by reordering the array allocations to happen after we have
validated parameters. While at it, convert the array allocations to use
the newly introduced macros.
Note that the relevant variables pointing into arrays should also be
converted to use `size_t` instead of `int`. This is left for a later
commit in this series.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Similar to the preceding commit, let's carry over macros to allocate
arrays with `REFTABLE_ALLOC_ARRAY()` and `REFTABLE_CALLOC_ARRAY()`. This
requires us to change the signature of `reftable_calloc()`, which only
takes a single argument right now and thus puts the burden on the caller
to calculate the final array's size. This is a net improvement though as
it means that we can now provide proper overflow checks when multiplying
the array size with the member size.
Convert callsites of `reftable_calloc()` to the new signature and start
using the new macros where possible.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Throughout the reftable library we have many cases where we need to grow
arrays. In order to avoid too many reallocations, we roughly double the
capacity of the array on each iteration. The resulting code pattern is
duplicated across many sites.
We have similar patterns in our main codebase, which is why we have
eventually introduced an `ALLOC_GROW()` macro to abstract it away and
avoid some code duplication. We cannot easily reuse this macro here
though because `ALLOC_GROW()` uses `REALLOC_ARRAY()`, which in turn will
call realloc(3P) to grow the array. The reftable code is structured as a
library though (even if the boundaries are fuzzy), and one property this
brings with it is that it is possible to plug in your own allocators. So
instead of using realloc(3P), we need to use `reftable_realloc()` that
knows to use the user-provided implementation.
So let's introduce two new macros `REFTABLE_REALLOC_ARRAY()` and
`REFTABLE_ALLOC_GROW()` that mirror what we do in our main codebase,
with two modifications:
- They use `reftable_realloc()`, as explained above.
- They use a different growth factor of `2 * cap + 1` instead of `(cap
+ 16) * 3 / 2`.
The second change is because we know a bit more about the allocation
patterns in the reftable library. In most cases, we end up only having a
handful of items in the array and don't end up growing them. The initial
capacity that our normal growth factor uses (which is 24) would thus end
up over-allocating in a lot of code paths. This effect is measurable:
- Before change:
HEAP SUMMARY:
in use at exit: 671,983 bytes in 152 blocks
total heap usage: 3,843,446 allocs, 3,843,294 frees, 223,761,402 bytes allocated
- After change with a growth factor of `(2 * alloc + 1)`:
HEAP SUMMARY:
in use at exit: 671,983 bytes in 152 blocks
total heap usage: 3,843,446 allocs, 3,843,294 frees, 223,761,410 bytes allocated
- After change with a growth factor of `(alloc + 16)* 2 / 3`:
HEAP SUMMARY:
in use at exit: 671,983 bytes in 152 blocks
total heap usage: 3,833,673 allocs, 3,833,521 frees, 4,728,251,742 bytes allocated
While the total heap usage is roughly the same, we do end up allocating
significantly more bytes with our usual growth factor (in fact, roughly
21 times as many).
Convert the reftable library to use these new macros.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The way the index gets written and read is not trivial at all and
requires the reader to piece together a bunch of parts to figure out how
it works. Add some documentation to hopefully make this easier to
understand for the next reader.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When finishing a section we will potentially write an index that makes
it more efficient to look up relevant blocks. The index records written
will encode, for each block of the indexed section, what the offset of
that block is as well as the last key of that block. Thus, the reader
would iterate through the index records to find the first key larger or
equal to the wanted key and then use the encoded offset to look up the
desired block.
When there are a lot of blocks to index though we may end up writing
multiple index blocks, too. To not require a linear search across all
index blocks we instead end up writing a multi-level index. Instead of
referring to the block we are after, an index record may point to
another index block. The reader will then access the highest-level index
and follow down the chain of index blocks until it hits the sought-after
block.
It has been observed though that it is impossible to seek ref records of
the last ref block when using a multi-level index. While the multi-level
index exists and looks fine for most of the part, the highest-level
index was missing an index record pointing to the last block of the next
index. Thus, every additional level made more refs become unseekable at
the end of the ref section.
The root cause is that we are not flushing the last block of the current
level once done writing the level. Consequently, it wasn't recorded in
the blocks that need to be indexed by the next-higher level and thus we
forgot about it.
Fix this bug by flushing blocks after we have written all index records.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When finishing the current section some index records might be written
for the section to the table. The logic that adds these records to the
writer duplicates what we already have in `writer_add_record()`, making
this more complicated than it really has to be.
Simplify the code by using `writer_add_record()` instead. While at it,
drop the unneeded braces around a loop to make the code conform to our
code style better.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The reftable writer is tracking the number of blocks it has to index via
the `index_len` variable. But while this variable is of type `size_t`,
some sites use an `int` to loop through the index entries.
Convert the code to consistently use `size_t`.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When doing an indexed seek we first need to do a linear seek in order to
find the index block for our wanted key. We do not check the returned
error of the linear seek though. This is likely not an issue because the
next call to `table_iter_next()` would return error, too. But it very
much is a code smell when an error variable is being assigned to without
actually checking it.
Safeguard the code by checking for errors.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In 1df18a1c9a (reftable: honor core.fsync, 2024-01-23), we have added
code to fsync both newly written reftables as well as "tables.list" to
disk. But there are two code paths where "tables.list" is being written:
- When appending a new table due to a normal ref update.
- When compacting a range of tables during compaction.
We have only addressed the former code path, but do not yet sync the new
"tables.list" file in the latter. Fix this omission.
Note that we are not yet adding any tests. These tests will be added
once the "reftable" backend has been upstreamed.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Low-level I/O optimization for reftable.
* ps/reftable-optimize-io:
reftable/stack: fix race in up-to-date check
reftable/stack: unconditionally reload stack after commit
reftable/blocksource: use mmap to read tables
reftable/blocksource: refactor code to match our coding style
reftable/stack: use stat info to avoid re-reading stack list
reftable/stack: refactor reloading to use file descriptor
reftable/stack: refactor stack reloading to have common exit path
When creating a new compacted table from a range of preexisting ones we
don't set the default permissions on the resulting table when specified
by the user. This has the effect that the "core.sharedRepository" config
will not be honored correctly.
Fix this bug and add a test to catch this issue. Note that we only test
on non-Windows platforms because Windows does not use POSIX permissions
natively.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
While the reffiles backend honors configured fsync settings, the
reftable backend does not. Address this by fsyncing reftable files using
the write-or-die api's fsync_component() in two places: when we
add additional entries into the table, and when we close the reftable
writer.
This commits adds a flush function pointer as a new member of
reftable_writer because we are not sure that the first argument to the
*write function pointer always contains a file descriptor. In the case of
strbuf_add_void, the first argument is a buffer. This way, we can pass
in a corresponding flush function that knows how to flush depending on
which writer is being used.
This patch does not contain tests as they will need to wait for another
patch to start to exercise the reftable backend. At that point, the
tests will be added to observe that fsyncs are happening when the
reftable is in use.
Signed-off-by: John Cai <johncai86@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In 6fdfaf15a0 (reftable/stack: use stat info to avoid re-reading stack
list, 2024-01-11) we have introduced a new mechanism to avoid re-reading
the table list in case stat(3P) figures out that the stack didn't change
since the last time we read it.
While this change significantly improved performance when writing many
refs, it can unfortunately lead to false negatives in very specific
scenarios. Given two processes A and B, there is a feasible sequence of
events that cause us to accidentally treat the table list as up-to-date
even though it changed:
1. A reads the reftable stack and caches its stat info.
2. B updates the stack, appending a new table to "tables.list". This
will both use a new inode and result in a different file size, thus
invalidating A's cache in theory.
3. B decides to auto-compact the stack and merges two tables. The file
size now matches what A has cached again. Furthermore, the
filesystem may decide to recycle the inode number of the file we
have replaced in (2) because it is not in use anymore.
4. A reloads the reftable stack. Neither the inode number nor the
file size changed. If the timestamps did not change either then we
think the cached copy of our stack is up-to-date.
In fact, the commit introduced three related issues:
- Non-POSIX compliant systems may not report proper `st_dev` and
`st_ino` values in stat(3P), which made us rely solely on the
file's potentially coarse-grained mtime and ctime.
- `stat_validity_check()` and friends may end up not comparing
`st_dev` and `st_ino` depending on the "core.checkstat" config,
again reducing the signal to the mtime and ctime.
- `st_ino` can be recycled, rendering the check moot even on
POSIX-compliant systems.
Given that POSIX defines that "The st_ino and st_dev fields taken
together uniquely identify the file within the system", these issues led
to the most important signal to establish file identity to be ignored or
become useless in some cases.
Refactor the code to stop using `stat_validity_check()`. Instead, we
manually stat(3P) the file descriptors to make relevant information
available. On Windows and MSYS2 the result will have both `st_dev` and
`st_ino` set to 0, which allows us to address the first issue by not
using the stat-based cache in that case. It also allows us to make sure
that we always compare `st_dev` and `st_ino`, addressing the second
issue.
The third issue of inode recycling can be addressed by keeping the file
descriptor of "files.list" open during the lifetime of the reftable
stack. As the file will still exist on disk even though it has been
unlinked it is impossible for its inode to be recycled as long as the
file descriptor is still open.
This should address the race in a POSIX-compliant way. The only real
downside is that this mechanism cannot be used on non-POSIX-compliant
systems like Windows. But we at least have the second-level caching
mechanism in place that compares contents of "files.list" with the
currently loaded list of tables.
This new mechanism performs roughly the same as the previous one that
relied on `stat_validity_check()`:
Benchmark 1: update-ref: create many refs (HEAD~)
Time (mean ± σ): 4.754 s ± 0.026 s [User: 2.204 s, System: 2.549 s]
Range (min … max): 4.694 s … 4.802 s 20 runs
Benchmark 2: update-ref: create many refs (HEAD)
Time (mean ± σ): 4.721 s ± 0.020 s [User: 2.194 s, System: 2.527 s]
Range (min … max): 4.691 s … 4.753 s 20 runs
Summary
update-ref: create many refs (HEAD~) ran
1.01 ± 0.01 times faster than update-ref: create many refs (HEAD)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
After we have committed an addition to the reftable stack we call
`reftable_stack_reload()` to reload the stack and thus reflect the
changes that were just added. This function will only conditionally
reload the stack in case `stack_uptodate()` tells us that the stack
needs reloading. This check is wasteful though because we already know
that the stack needs reloading.
Call `reftable_stack_reload_maybe_reuse()` instead, which will
unconditionally reload the stack. This is merely a conceptual fix, the
code in question was not found to cause any problems in practice.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
More fixes and optimizations to the reftable backend.
* ps/reftable-fixes-and-optims:
reftable/merged: transfer ownership of records when iterating
reftable/merged: really reuse buffers to compute record keys
reftable/record: store "val2" hashes as static arrays
reftable/record: store "val1" hashes as static arrays
reftable/record: constify some parts of the interface
reftable/writer: fix index corruption when writing multiple indices
reftable/stack: do not auto-compact twice in `reftable_stack_add()`
reftable/stack: do not overwrite errors when compacting
The blocksource interface provides an interface to read blocks from a
reftable table. This interface is implemented using read(3P) calls on
the underlying file descriptor. While this works alright, this pattern
is very inefficient when repeatedly querying the reftable stack for one
or more refs. This inefficiency can mostly be attributed to the fact
that we often need to re-read the same blocks over and over again, and
every single time we need to call read(3P) again.
A natural fit in this context is to use mmap(3P) instead of read(3P),
which has a bunch of benefits:
- We do not need to come up with a caching strategy for some of the
blocks as this will be handled by the kernel already.
- We can avoid the overhead of having to call into the read(3P)
syscall repeatedly.
- We do not need to allocate returned blocks repeatedly, but can
instead hand out pointers into the mmapped region directly.
Using mmap comes with a significant drawback on Windows though, because
mmapped files cannot be deleted and neither is it possible to rename
files onto an mmapped file. But for one, the reftable library gracefully
handles the case where auto-compaction cannot delete a still-open stack
already and ignores any such errors. Also, `reftable_stack_clean()` will
prune stale tables which are not referenced by "tables.list" anymore so
that those files can eventually be pruned. And second, we never rewrite
already-written stacks, so it does not matter that we cannot rename a
file over an mmaped file, either.
Another unfortunate property of mmap is that it is not supported by all
systems. But given that the size of reftables should typically be rather
limited (megabytes at most in the vast majority of repositories), we can
use the fallback implementation provided by `git_mmap()` which reads the
whole file into memory instead. This is the same strategy that the
"packed" backend uses.
While this change doesn't significantly improve performance in the case
where we're seeking through stacks once (like e.g. git-for-each-ref(1)
would). But it does speed up usecases where there is lots of random
access to refs, e.g. when writing. The following benchmark demonstrates
these savings with git-update-ref(1) creating N refs in an otherwise
empty repository:
Benchmark 1: update-ref: create many refs (refcount = 1, revision = HEAD~)
Time (mean ± σ): 5.1 ms ± 0.2 ms [User: 2.5 ms, System: 2.5 ms]
Range (min … max): 4.8 ms … 7.1 ms 111 runs
Benchmark 2: update-ref: create many refs (refcount = 100, revision = HEAD~)
Time (mean ± σ): 14.8 ms ± 0.5 ms [User: 7.1 ms, System: 7.5 ms]
Range (min … max): 14.1 ms … 18.7 ms 84 runs
Benchmark 3: update-ref: create many refs (refcount = 10000, revision = HEAD~)
Time (mean ± σ): 926.4 ms ± 5.6 ms [User: 448.5 ms, System: 477.7 ms]
Range (min … max): 920.0 ms … 936.1 ms 10 runs
Benchmark 4: update-ref: create many refs (refcount = 1, revision = HEAD)
Time (mean ± σ): 5.0 ms ± 0.2 ms [User: 2.4 ms, System: 2.5 ms]
Range (min … max): 4.7 ms … 5.4 ms 111 runs
Benchmark 5: update-ref: create many refs (refcount = 100, revision = HEAD)
Time (mean ± σ): 10.5 ms ± 0.2 ms [User: 5.0 ms, System: 5.3 ms]
Range (min … max): 10.0 ms … 10.9 ms 93 runs
Benchmark 6: update-ref: create many refs (refcount = 10000, revision = HEAD)
Time (mean ± σ): 529.6 ms ± 9.1 ms [User: 268.0 ms, System: 261.4 ms]
Range (min … max): 522.4 ms … 547.1 ms 10 runs
Summary
update-ref: create many refs (refcount = 1, revision = HEAD) ran
1.01 ± 0.06 times faster than update-ref: create many refs (refcount = 1, revision = HEAD~)
2.08 ± 0.07 times faster than update-ref: create many refs (refcount = 100, revision = HEAD)
2.95 ± 0.14 times faster than update-ref: create many refs (refcount = 100, revision = HEAD~)
105.33 ± 3.76 times faster than update-ref: create many refs (refcount = 10000, revision = HEAD)
184.24 ± 5.89 times faster than update-ref: create many refs (refcount = 10000, revision = HEAD~)
Theoretically, we could also replicate the strategy of the "packed"
backend where small tables are read into memory instead of using mmap.
Benchmarks did not confirm that this has a performance benefit though.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Refactor `reftable_block_source_from_file()` to match our coding style
better.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Whenever we call into the refs interfaces we potentially have to reload
refs in case they have been concurrently modified, either in-process or
externally. While this happens somewhat automatically for loose refs
because we simply try to re-read the files, the "packed" backend will
reload its snapshot of the packed-refs file in case its stat info has
changed since last reading it.
In the reftable backend we have a similar mechanism that is provided by
`reftable_stack_reload()`. This function will read the list of stacks
from "tables.list" and, if they have changed from the currently stored
list, reload the stacks. This is heavily inefficient though, as we have
to check whether the stack is up-to-date on basically every read and
thus keep on re-reading the file all the time even if it didn't change
at all.
We can do better and use the same stat(3P)-based mechanism that the
"packed" backend uses. Instead of reading the file, we will only open
the file descriptor, fstat(3P) it, and then compare the info against the
cached value from the last time we have updated the stack. This should
always work alright because "tables.list" is updated atomically via a
rename, so even if the ctime or mtime wasn't granular enough to identify
a change, at least the inode number or file size should have changed.
This change significantly speeds up operations where many refs are read,
like when using git-update-ref(1). The following benchmark creates N
refs in an otherwise-empty repository via `git update-ref --stdin`:
Benchmark 1: update-ref: create many refs (refcount = 1, revision = HEAD~)
Time (mean ± σ): 5.1 ms ± 0.2 ms [User: 2.4 ms, System: 2.6 ms]
Range (min … max): 4.8 ms … 7.2 ms 109 runs
Benchmark 2: update-ref: create many refs (refcount = 100, revision = HEAD~)
Time (mean ± σ): 19.1 ms ± 0.9 ms [User: 8.9 ms, System: 9.9 ms]
Range (min … max): 18.4 ms … 26.7 ms 72 runs
Benchmark 3: update-ref: create many refs (refcount = 10000, revision = HEAD~)
Time (mean ± σ): 1.336 s ± 0.018 s [User: 0.590 s, System: 0.724 s]
Range (min … max): 1.314 s … 1.373 s 10 runs
Benchmark 4: update-ref: create many refs (refcount = 1, revision = HEAD)
Time (mean ± σ): 5.1 ms ± 0.2 ms [User: 2.4 ms, System: 2.6 ms]
Range (min … max): 4.8 ms … 7.2 ms 109 runs
Benchmark 5: update-ref: create many refs (refcount = 100, revision = HEAD)
Time (mean ± σ): 14.8 ms ± 0.2 ms [User: 7.1 ms, System: 7.5 ms]
Range (min … max): 14.2 ms … 15.2 ms 82 runs
Benchmark 6: update-ref: create many refs (refcount = 10000, revision = HEAD)
Time (mean ± σ): 927.6 ms ± 5.3 ms [User: 437.8 ms, System: 489.5 ms]
Range (min … max): 919.4 ms … 936.4 ms 10 runs
Summary
update-ref: create many refs (refcount = 1, revision = HEAD) ran
1.00 ± 0.07 times faster than update-ref: create many refs (refcount = 1, revision = HEAD~)
2.89 ± 0.14 times faster than update-ref: create many refs (refcount = 100, revision = HEAD)
3.74 ± 0.25 times faster than update-ref: create many refs (refcount = 100, revision = HEAD~)
181.26 ± 8.30 times faster than update-ref: create many refs (refcount = 10000, revision = HEAD)
261.01 ± 12.35 times faster than update-ref: create many refs (refcount = 10000, revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We're about to introduce a stat(3P)-based caching mechanism to reload
the list of stacks only when it has changed. In order to avoid race
conditions this requires us to have a file descriptor available that we
can use to call fstat(3P) on.
Prepare for this by converting the code to use `fd_read_lines()` so that
we have the file descriptor readily available.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The `reftable_stack_reload_maybe_reuse()` function is responsible for
reloading the reftable list from disk. The function is quite hard to
follow though because it has a bunch of different exit paths, many of
which have to free the same set of resources.
Refactor the function to have a common exit path. While at it, touch up
the style of this function a bit to match our usual coding style better.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove unused header "#include".
* en/header-cleanup:
treewide: remove unnecessary includes in source files
treewide: add direct includes currently only pulled in transitively
trace2/tr2_tls.h: remove unnecessary include
submodule-config.h: remove unnecessary include
pkt-line.h: remove unnecessary include
line-log.h: remove unnecessary include
http.h: remove unnecessary include
fsmonitor--daemon.h: remove unnecessary includes
blame.h: remove unnecessary includes
archive.h: remove unnecessary include
treewide: remove unnecessary includes in source files
treewide: remove unnecessary includes from header files
When iterating over records with the merged iterator we put the records
into a priority queue before yielding them to the caller. This means
that we need to allocate the contents of these records before we can
pass them over to the caller.
The handover to the caller is quite inefficient though because we first
deallocate the record passed in by the caller and then copy over the new
record, which requires us to reallocate memory.
Refactor the code to instead transfer ownership of the new record to the
caller. So instead of reallocating all contents, we now release the old
record and then copy contents of the new record into place.
The following benchmark of `git show-ref --quiet` in a repository with
around 350k refs shows a clear improvement. Before:
HEAP SUMMARY:
in use at exit: 21,163 bytes in 193 blocks
total heap usage: 708,058 allocs, 707,865 frees, 36,783,255 bytes allocated
After:
HEAP SUMMARY:
in use at exit: 21,163 bytes in 193 blocks
total heap usage: 357,007 allocs, 356,814 frees, 24,193,602 bytes allocated
This shows that we now have roundabout a single allocation per record
that we're yielding from the iterator. Ideally, we'd also get rid of
this allocation so that the number of allocations doesn't scale with the
number of refs anymore. This would require some larger surgery though
because the memory is owned by the priority queue before transferring it
over to the caller.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In 829231dc20 (reftable/merged: reuse buffer to compute record keys,
2023-12-11), we have refactored the merged iterator to reuse a pair of
long-living strbufs by relying on the fact that `reftable_record_key()`
tries to reuse already allocated strbufs by calling `strbuf_reset()`,
which should give us significantly fewer reallocations compared to the
old code that used on-stack strbufs that are allocated for each and
every iteration. Unfortunately, we called `strbuf_release()` on these
long-living strbufs that we meant to reuse on each iteration, defeating
the optimization.
Fix this performance issue by not releasing those buffers on iteration
anymore, where we instead rely on `merged_iter_close()` to release the
buffers for us.
Using `git show-ref --quiet` in a repository with ~350k refs this leads
to a significant drop in allocations. Before:
HEAP SUMMARY:
in use at exit: 21,163 bytes in 193 blocks
total heap usage: 1,410,148 allocs, 1,409,955 frees, 61,976,068 bytes allocated
After:
HEAP SUMMARY:
in use at exit: 21,163 bytes in 193 blocks
total heap usage: 708,058 allocs, 707,865 frees, 36,783,255 bytes allocated
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Similar to the preceding commit, convert ref records of type "val2" to
store their object IDs in static arrays instead of allocating them for
every single record.
We're using the same benchmark as in the preceding commit, with `git
show-ref --quiet` in a repository with ~350k refs. This time around
though the effects aren't this huge. Before:
HEAP SUMMARY:
in use at exit: 21,163 bytes in 193 blocks
total heap usage: 1,419,040 allocs, 1,418,847 frees, 62,153,868 bytes allocated
After:
HEAP SUMMARY:
in use at exit: 21,163 bytes in 193 blocks
total heap usage: 1,410,148 allocs, 1,409,955 frees, 61,976,068 bytes allocated
This is because "val2"-type records are typically only stored for peeled
tags, and the number of annotated tags in the benchmark repository is
rather low. Still, it can be seen that this change leads to a reduction
of allocations overall, even if only a small one.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>